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Abstract

Purpose – A computational fluid dynamics code for the calculation of laminar hypersonic
multi-species gas flows in chemical non-equilibrium in axisymmetric or two-dimensional
configuration on shared and distributed memory parallel computers is presented and validated.
The code is designed to work efficiently in combination with an automatic domain decompositioning
method developed to facilitate efficient parallel computations of various flow problems.

Design/methodology/approach – The baseline implicit numerical method developed is the
lower-upper symmetric Gauss-Seidel scheme, which is combined with a sub-iteration scheme to
achieve time-accuracy up to third-order. The spatial discretisation is based on Roe’s flux-difference
splitting and various non-linear flux limiters maintaining total-variation diminishing properties and
up to third-order spatial accuracy in continuous regions of flow. The domain subdivision procedure is
designed to work for single- and multi-block domains without being constrained by the block
boundaries, and an arbitrary number of processors used for the computation.

Findings – The code developed reproduces accurately various types of flows, e.g. flow over a flat
plate, diffusive mixing and oscillating shock induced combustion around a projectile fired into
premixed gas, and demonstrates close to linear scalability within limits of load imbalance.

Research limitations/implications – The cases considered are axisymmetric or two-dimensional,
and assume laminar flow. An extension to three-dimensional turbulent flows is left for future work.

Originality/value – Results of a parallel computation, utilising a newly developed automatic
domain subdivision procedure, for oscillating shock-induced combustion around a projectile and
various other cases are presented. The influence of entropy correction in Roe’s flux-difference splitting
algorithm on diffusive mixing of multi-species flows was examined.
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Introduction
The computational fluid dynamics code developed and presented in this paper is aimed
at the calculation of hypersonic multi-species gas flows in chemical non-equilibrium in
axisymmetric or two-dimensional configuration. The numerical study of such flows has
become more feasible due to the steadily increasing performance of computers, but is
still expensive for realistic configurations. Edwards (1992) states that solving the
reacting flow around a hypersonic vehicle in powered flight requires hundreds of hours
of computing time on a Cray Y-MP. For a three-dimensional computation of viscous,
reactive flow mesh sizes easily exceed a million cells (von Lavante et al., 2001) for solving
only a specific, limited problem. Fine meshes are required to properly resolve shock
waves and viscous shear layers, severely reducing the allowed time-step, especially in
the case of a time-accurate calculation. This reflects the excessive computational cost of
correctly predicting these flows, which usually requires the inclusion of multiple species
and complex reaction schemes to simulate the non-equilibrium chemistry. In order to
achieve reasonable run-times the computational code developed has been parallelized
for distributed memory parallel computers.

The application of computational results must be accepted with great care when not
confirmed by appropriate experiments. Edwards (1992) describes the numerical
analysis of hypersonic, chemically reacting flows, Marvin (1992) provides “A CFD
Validation Roadmap For Hypersonic Flows” and Dolling (1992) presents “Problems in
the Validation of CFD Codes Through Comparison with Experiment” when concerned
with the design of hypersonic vehicles.

The test cases considered in this paper are conceptually different to ensure the proper
functioning of the respective part of the flow solver. Initially, the flow over a flat plate is
simulated to verify the correct boundary layer development and, hence, implementation of
viscous terms. Next, the diffusive mixing of two jets of different species is reproduced
numerically to ensure the correct diffusion flux calculation. As a last, and most demanding
example, shock, oscillating shock and detonation induced combustion around a projectile
fired into a premixed combustible multi-species gas is calculated. With this, very
demanding, case the quality of the time-accurate numerical integration is tested.

A selection of works on time-accurate calculation of chemically reacting, viscous
flow can be found for ram-accelerators and expansion tubes. Nusca and Kruczynski
(1996) solve the viscous flow around a realistic projectile with four fins and Nusca
(2002) the axisymmetric flow around a projectile. Similar time-accurate, axisymmetric
calculations for flow around a projectile were performed by Yungster et al. (1998) and
Choi et al. (1998), concentrating on the starting process. A more detailed study of
shock-wave and boundary-layer interaction on the projectile and tube wall surfaces is
presented by Yungster (1992). Time-accurate calculations for chemically reactive flow
in expansion tubes were performed by the same authors, Choi et al. (1999) and
Yungster and Radhakrishnan (2001). Again, Choi et al. (2000a, b) examine oscillating
shock-induced combustion, as experimentally recorded by Lehr (1972). In these papers
by Choi et al. different time-marching methods and limiters are examined. For the
lower-upper symmetric Gauss-Seidel (LU-SGS) scheme employed by Choi et al. only
second-order accuracy in time is maintained, as in most other papers mentioned before.
Results for the latter two papers by Choi et al. are an important basis for the validation
of the flow solver presented here, which employs both higher-order accuracy in time,
and particularly effective parallel decomposition and execution.
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The parallel flow solver for the calculation of chemically reactive steady-state and
time-accurate flows utilizing detailed chemical reaction schemes presented in this paper
offers up to third order accuracy in space and time. Out of various possibilities for the
spatial discretization described in Hirsch (1988, Vol. 1), a cell-centred finite-volume scheme
is employed in combination with a discretization of the domain by multi-block grid
systems based on structured meshes. The cell-centred finite-volume approach has been
chosen for its inherent mass conservation and because it avoids numerical singularities or
ambiguities that can occur at domain boundaries for a node-based discretization.

For the cell-centred finite-volume approach fluxes through the cell faces are
considered. Hirsch (1988, Vol. 2, pp. 408-583), contains a broad selection of upwind and
high-resolution schemes for the calculation of fluxes through cell faces. Based on the
experience made by other researchers Roe’s flux-difference splitting (FDS) scheme is
selected for its good shock capturing capabilities (Sweby, 1984) and superior
reproduction of contact discontinuities (Shuen et al., 1990). The FDS is used in
combination with various total-variation diminishing (TVD) flux limiters described in
Yee and Shinn (1989), Yee et al. (1990) and Shuen (1992). Roe’s FDS scheme is known to
exhibit the carbuncle phenomenon, as discussed in further detail by Gressier and
Moschetta (2000) and Pandolfi and D’Ambrosio (2001). While most analysis
concentrate on the entropy correction required to avoid the carbuncle phenomenon
in connection with shock waves, in this paper the influence of entropy correction on the
solution accuracy with respect to multi-species diffusion is examined. This allows to
assess to what extent the accurate calculation of diffusive effects is degraded when the
physical soundness of shock waves is ensured.

As for the spatial discretization there are many possibilities available to accomplish
the temporal discretization. The selection of an implicit scheme is mandatory due to the
high stiffness of the system of equations, where the stiffness of a system of equations is
characterized by the minimum and maximum absolute value of the eigenvalues. The
chemical source terms introduce largely different time-scales, severely limiting the
allowable time step for an explicit method. Again, based on the experience made by
researchers solving chemically reacting, supersonic flows, shown for instance in Shuen
(1992) and Choi et al. (2000a), the LU-SGS scheme is used to solve the resulting system
of equations and march the solution forward in time. The fundamentals of this method
can be found in papers by Jameson and Turkel (1981) and Yoon and Jameson (1988).
Owing to the scheme’s inherent factorization error time-accuracy cannot be achieved
directly. To compensate for the factorization error and obtain a time-accurate scheme
of up to third order accuracy, backward differences are used in combination with
several sub-iterations performed for each physical time step (Choi et al., 2000a).

The species properties are calculated using polynomials as suggested by McBride
et al. (1993) and the transport properties applying rules of the kinetic gas theory, as
outlined by Hirschfelder et al. (1954) and Gardiner (1984). The chemical reaction
scheme used was provided by Wilson and MacCormack (1992), where some
modifications were applied in order to make the original scheme by Jachimowski
(1988), developed for the NASP program, more accurate for higher pressure levels.

The paper is presented as follows: after the introduction the governing equations,
their numerical implementation and aspects of parallelization are described. Next, the
three test cases and related numerical simulations are presented before conclusions are
drawn.
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Governing equations
Using density r, velocities u and v, pressure p, total energy E, species mass fraction Y,
chemical source term v, shear tension t, diffusion and energy fluxes j and 1 and axial
and radial coordinates x and y, the axisymmetric, laminar Navier-Stokes equations for
a chemically reacting multi-species gas flow with Ns components are given in
conservative, differential form by
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and m is the viscosity of the gas mixture. The species diffusion is calculated using
Fick’s law, where the diffusion coefficient Di,mix for species i with respect to the gas
mixture replaces the binary diffusion coefficients (Warnatz and Maas, 1993)

j
i
¼ 2rDi;mix7Yi ð6Þ

Fick’s law is an approximation of the multi-component diffusion equations obtained
from the kinetic theory of gases, which significantly reduces the computational costs of
diffusion flux calculation. The validity of this approximation is discussed by Williams
(1985).

Further, the energy flux vector is calculated by summarizing heat conduction and
enthalpy diffusion according to

1 ¼ 2l7T þ
XNs
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hij i
ð7Þ

where l is the heat conductivity coefficient.
Of great importance for any reactive flow is the production and destruction of a

species, described by the source term
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where the third body efficiency [M ]l for reaction l can be expressed as

½M �l ¼ al;0 þ
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Þ ¼ 0

0 otherwise

(

and n 00
j=i;l and n 0

j=i;l are the stoichiometric coefficients for the reaction scheme used.
Further, the concentration of species i is given by [Mi]. The forward reaction rates kf,l

are calculated using the extended Arrhenius equation, while the reverse rates kb,l are
determined with the help of the equilibrium constant calculated from the Gibbs
free-energy condition. The calculation of the chemical source terms is straigtforward
with known species properties and chemical reaction scheme. However, great care
must be taken when selecting a particular reaction scheme for a specific problem, as
reactions schemes and their development can be rather complex and the schemes are
not generally valid at all thermodynamic conditions. More details can be found in
Warnatz and Maas (1993).

Thermodynamic closure of the system of equations is achieved by the the thermal
equation of state for a multi-species gas;

p ¼ rRT ¼ rR* T
XNs
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ð9Þ
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with R* as universal gas constant and R ¼ R*=M as gas constant for the mixture.
Further, the enthalpy of the gas mixture is calculated according to

h ¼
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i¼1
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XNs
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Z T
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dT

� �
ð10Þ

where h0
fi is the heat of formation at the given reference temperature Tref. The specific

heats at constant pressure cpi
are computed utilizing polynomials with appropriate

coefficients provided by McBride et al. (1993).
The transport properties viscosity, thermal conductivity and binary diffusion

coefficients, are calculated for each species following the laws of kinetic gas theory
(Hirschfelder et al., 1954). Next, mixing rules are applied to obtain the appropriate
properties for the multi-species gas up to a 5-10 per cent accuracy, as outlined by
Warnatz and Maas (1993).

Numerical method
The governing equations are solved with an implicit, cell-centred, structured
multi-block, finite-volume scheme with an accuracy up to third order in time and space.
The conservative variables and the source terms are approximated as constant within
a cell of fixed geometry in order to develop the finite-volume formulation for the
governing equations. At the same time the residual vector R is introduced to give
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where the volume integration of the fluxes can be replaced by a surface integration
using the Gauss identity. Further, this decoupling of the temporal and spatial
discretization allows the introduction of the semi-discrete form of the equations, where
both parts can be derived independently.

Spatial discretization
Roe’s FDS in combination with various TVD limiters is used to discretize inviscid
fluxes. TVD techniques allowing up to third order spatial accuracy are implemented as
described by Yee et al. (1990). They are used with arithmetic or Roe averaged states,
following the procedures outlined by Shuen et al. (1990). An entropy fix must be
applied to certain problems, especially flows around blunt bodies, in order to avoid
non-physical solutions displaying the so-called carbuncle phenomenon. The viscous
fluxes are implemented by central differences, reflecting their physical property.

Temporal discretization
Instead of directly integrating the system of equations in the time domain, for each
physical time step a steady-state problem is solved in a pseudo time domain. For this,
a new residual R* is introduced according to

R* ¼ V
›

›t
Q þ RðQÞ ð12Þ

Hence, the problem
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R* ðQ½ti; t* �Þ ¼ 0; t* !1 ð13Þ

is solved for an intermediate, physical time level ti, marching the solution forward in
pseudo time t*. Third order accuracy in time for non-constant time steps is obtained by
the following formulation
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For a physical time step the iteration scheme

1
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›Q

����
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DQmþ1
¼ 2R* j

m
ð15Þ

with m as the sub-iteration count, has to be applied until the residual in the pseudo time
domain R* vanishes.

LU-SGS scheme
In equation (15) the Jacobi matrices corresponding to the right-hand side R* are
included to the left-hand side by ›R*=›Q: For a mathematically complete left-hand
side formulation, Jacobi matrices for the chemical source term, the inviscid fluxes, the
viscous fluxes and the source term due to axisymmetry would have to be computed.
In this work all Jacobi matrices except the axisymmetric one are included in the
left-hand side. The components of these matrices are given by Shuen (1992)), also
providing a Jacobi matrix for the thin-shear layer approximated viscous fluxes.
The resulting system of equations is then solved by the LU-SGS scheme, as introduced
by Yoon and Jameson (1988).

For a time-accurate integration a suitable time step must be found locally for each
cell, and then the minimum local time step be used globally. Even for a steady-state
calculation a finite time step is beneficial as the factorization error reduces the stability
of the implicit method. The time step calculation requires the knowledge of the
convective and diffusive spectral radii, Lc and Ld, based on the eigenvalues of the
inviscid and viscous Jacobi matrices and the local cell metrics. Details of the calculation
of the spectral radii and eigenvalues of the flux matrices can be found in Ess (2003) and
Kunz and Lakshminarayana (1992). The local time step is then calculated according to

Dt ¼ CFL
1

Lt
¼ CFL

1

Lc þ Ld
ð16Þ

In the case of a fully implicit left-hand side and an integration in time employing
sub-iterations, only the inviscid time step restrictions need to be applied.
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With a suitable time step calculated the time-marching integration can proceed and
its convergence progress is monitored by the calculation of the residual. Here, a
reference state is required to normalize the change of conserved variables. The residual
for a cell is then calculated by applying the L2-norm to the change of the conserved
variables that was divided by the reference state and the local time step. The division
by the local time step does not apply for a pure Newton-type iteration where the time
step tends to infinity.
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The overall residual 1 is then obtained by averaging the residual obtained for all cells;

1 ¼
1

N cells N cells

X
1cell ð18Þ

This method of calculating the residual was applied to the results of the iteration and
those of the sub-iteration scheme.

Aspects of parallelization
The calculation of chemically reacting multi-species gas flows is computationally very
expensive, even when considering flows in two spatial dimensions only. This is more
pronounced when dealing with unsteady physical problems that require a
time-accurate integration.

On the computational side current progress in increasing the speed of a processor is
somewhat limited, but orders of magnitude in speed up can be achieved when using
many processors in parallel. This does have great implications on the computer
program used to calculate the solution for a physical problem, and there are many
ways of parallelizing, which greatly depend on the computer architecture available.
A very good overview of parallel computing for computational fluid dynamics is given
by Roose and Van Driessche (1995).

The LU-SGS scheme used in this work solves the system of equations in two
sweeps, where the new solution of the current cell depends on that of the previously
calculated, new solutions of neighbour cells. This can be vectorized well, but not
parallelized without non-sychronized code execution and massive communication
requirements between the processes. This disadvantage inspired the approach to
parallelize the flow solver based on a subdivision of the computational domain into
parts of roughly equal size.

Each process completely solves the computational problem for the assigned
subdomain and then communicates the results to neighbouring processes only, and the
root process if required for saving the flow field data to disk. This yields acceptable
communication overhead between the processes and allows almost linear scalability if
the subdomains are of equal size and the subdomain boundaries of equal length.
The set-up has a drawback, though. The communication between neighbouring
subdomains is only carried out in between a sub-iteration or iteration and, therefore,
introduces an explicit coupling of the subdomains while within the subdomain
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an implicit coupling exists. In most cases, the convergence deteriorates if no
sub-iterations are performed, depending on the number of processors used. Further, in
the specific case of the numerical method developed here the factor c controlling
diagonal dominance of the system of equations solved with the LU-SGS scheme can be
chosen to be as low as 1.25 for a calculation without domain subdivision, once the
initial stage of the integration in the time domain is passed. When the same calculation
is repeated with a domain subdivision, values a lot lower than c ¼ 2:5 were found to
cause stability problems. In the theoretical limit, each cell of the domain could be
defined as a subdomain and an implicit Euler scheme would reduce to an explicit Euler
scheme.

For calculations that employ sub-iterations this problem is somewhat solved
because the update of values from neighbouring subdomains is performed after each
sub-iteration. Therefore, for a set of sub-iterations that produced one converged
time-step, the coupling between the subdomains becomes implicit as well.

The code presented in this paper uses the message-passing interface libraries, short
MPI, in order to parallelize the algorithm to run on distributed memory systems.
Despite being written for distributed memory systems there is no problem in using
such a code based on MPI on shared memory systems.

Automatic domain subdivision
In many cases of parallel computation where a subdivision of the computational
domain is performed, it is manually predefined or defined to coincide with the block
boundaries of a multi-block domain. This allows to specifically select the subdomain
shape and to hopefully reduce the communication between subprocesses thanks
to carefully selected subdomain boundaries. However, it becomes cumbersome to
manually design subdomains for each of various cases with different numbers of
processors available for a parallel computation. Also, if the subdomain shape must
coincide with a block of a multi-block domain, the number of processors that must be
used is fixed to at least the number of blocks, which is very inconvenient. If there are
more processors than blocks, some processors are idle resulting in an inefficient load
balancing. A solution to this problem is the creation of many more subdomains as there
are processors. As outlined by Struckmeier and Pfreundt (1993), several subdomains
can then be assigned to a single processor to balance the load. It does include extra
effort with respect to administration and, more importantly, to communication in
between a much higher number of subdomains than originally required.

Therefore, an automatic subdivision procedure has been developed, that generates a
domain decomposition for an arbitrary number of processors and independent of the
number of grid blocks or their shape.

The core procedure of subdomain creation starts with a single cell in the flow
domain not used by any other subdomain. This cell is considered the new subdomain,
that is expanded into alternating directions, step by step adding unused neighbouring
cells in the selected direction and switching to the next direction. This process is
repeated until no more unused neighbouring cells are available, because there are
physical boundaries or neighbouring subdomains preventing a further expansion, or
the target subdomain size is reached. The subdomain creation process is repeated until
the target number of subdomains is reached. Depending on the geometrical constraints,
the number of cells and the number of subdomains required, there will generally be
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cells unused in the domain. These cells have to be assigned to existing subdomains in a
sensible way that aims at a low load imbalance and a compact subdomain shape. The
last stage of the domain subdivision includes a final optimization of the subdomain
shape in order to, again, achieve a compact subdomain shape. This can be necessary in
case previous parts of the domain subdivision produced some highly stretched
fragments of a subdomain.

The basic idea behind this domain subdivision procedure is to create subdomains as
close as possible to an ideal subdomain with square shape. As the surface introduces
communication overhead to the neighbouring subdomains it is of vital importance for
parallel performance to have a high ratio of subdomain volume over surface, or in the
two-dimensional case subdomain area over boundary length. The individual shape and
size of the subdomains is strongly influenced by the number of cells in the domain, the
number of subdomains required, and, perhaps most importantly, the geometrical shape
of the domain itself. Hence, the domain subdivisions presented with the validation
cases are not purely based on rectangular subdomains. The fact that the subdomains
differ from an ideal rectangular shape is very useful to demonstrate the ability of the
flow solver to handle any given domain subdivision and maintain calculation
efficiency and solution integrity. Further details of this procedure can be found in
Ess (2003).

Quantities for assessment of parallel performance
The computational domain is assumed to contain Ncells cells, which must be distributed
between Nprocs processors. A certain number of cells N cells; subdomainðiÞ will be assigned
to each subdomain, where in this work the number of subdomains always equals the
number of processors. The target size in cells for such a subdomain is

N cells; target ¼ integerðN cells=Nprocs þ 0:5Þ ð19Þ

where integer(x) is the mathematically rounded integer number of x. This can then be
used to calculate the load imbalance LIB according to

LIB ¼ max
ðN cells; subdomainðiÞ 2 N cells; targetÞ

N cells; target
ð20Þ

Only subdomains with a size greater than the target subdomain size are of interest
here, because only those effectively slow down the overall performance. Since the
target cell number for a subdomain can only be an integer number, the number of cells
in total resulting from the target cell number applied to each subdomain in general
exceeds, at best equals, the number of cells within the domain. This allows to reduce
the cell number of the root process slightly when setting cell numbers of other
subdomains to the target number, so that the increased work load of the root process
due to additional administrative overhead can be balanced with respect to the work
load of the other processes.

Further, the time spent on computation and directly related communication is
identified as tc, the time spent on loading or saving data files or initializing the
computation discarded. Only the computation and directly related communication time
is of importance, because it represents by far the majority of time spent on the solution
of a flow problem and it is the time needed to assess parallel efficiency. It is important
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to note that tc here is not meant to measure the accumulated time spent on all
processors, but the effective, or wall clock time, spent on the computation. Hence, for a
parallel computation the time needed to solve a problem should ideally be the time
spent on a single-processor computation divided by the number of processors used.
In a real situation the overhead of the parallel code implementation and the
communication between processes will increase the time required. The parallel
speedup PAS is calculated according to

PAS ¼ tc;1processor=tc;Nprocs ð21Þ

Directly derived is the parallel efficiency PEF, obtained according to

PEF ¼ PAS=Nprocs ð22Þ

Both parallel speed up and parallel efficiency will be severely influenced by the load
imbalance. Therefore, there is a great interest in keeping the load imbalance as low as
possible.

However, the penalty of the current approach comes with the decay of convergence
when compared with a single-processor calculation. In the general case a reduction of
convergence must be expected when many processors are used for an implicit
calculation. As the domain is divided into more subdomains, more explicit coupling
between cells is introduced and the convergence of the implicit method will approach
more that of an explicit method.

Subdomain interconnection
Based on a prescribed domain subdivision each of the subdomains need to be
connected to their neighbours in order to propagate the fluxes through the domain.
This is achieved by surrounding each subdomain with overlap cells that are updated
with values from the neighbouring domain after each iteration or, if required,
sub-iteration. A cell at the boundary of a subdomain needs two overlap cells
representing neighbouring subdomain cells in each relevant direction as neighbours,
as shown in Figure 1. They are used to properly calculate the TVD flux limiters and
viscous fluxes for those boundary cells of a subdomain.

Because the overlap cells are updated only after each iteration or sub-iteration, the
coupling between the subdomains is explicit, while all other cells within a subdomain
are coupled implicitly.

During the parallel computation the updating of the overlap cells is the only major
communication that occurs, apart from some minor communication needed to
synchronize the overall computation with the root process. This synchronization
implies global communication of iteration counts, residual of calculation and
time-progress. However, since only subdomains neighbouring to each other need to
update the corresponding cells and overlap cells, communication is very limited.

Validation
Flow over flat plate
An important function of the flow solver is the correct calculation of viscous effects.
For this, the flow over a flat plate at fixed temperature is examined in order to compute
the boundary layer and temperature profiles developing.
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The inflow Mach number, pressure and temperature are 2, 2 566 Pa and 221.6 K,
respectively. These conditions are used in calculations performed by Lawrence et al.
(1986), who compared their results to experimental data. The incoming air gas flow is
simulated by a two-species gas mixture containing oxygen and nitrogen of molar
fractions of XO2

¼ 0:235 and XN2
¼ 0:765: Further, the temperature along the flat plate

of a length of 1 m is selected to equal the inflow temperature.
The set-up of the flow problem is shown in Figure 2 and the domain subdivision for

the parallel computations with 2, 4, 8 and 16 processors in Figure 3. For the accurate

Figure 1.
Overlap cells around

subdomains

Figure 2.
Set-up for viscous

boundary layer flow over
flat plate
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computation of the flow it is important to capture the oblique shock originating from
the leading edge of the flat plate within the computational domain, because only then
the pressure profile along the boundary layer is correct. This yields the computational
domain being split into a base block and an upper block, where the grid cells are
clustered significantly more in the base block. Therefore, the domain subdivision is
presented for the whole domain and the base block at the same time.

The calculations presented here investigate the influence of the entropy correction
parameter and that of the domain subdivision and parallel computation. The
convergence histories are shown in Figure 4. Much improved convergence can be
observed for a value of 1 ¼ 0:1 used as entropy correction. However, since this type of

Figure 3.
Domain subdivision for
flow over flat plate
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Figure 4.
Convergence histories for

computations of flow over
flat plate using different

entropy correction
coefficients and numbers

of processors
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problem does not need any entropy correction to deal with the carbuncle phenomenon
and the solution is physically more correct using 1 ¼ 0:0; this value is used for the
parallel computations. In this particular case the influence of the domain subdivision
on the convergence is minor, and only the calculation with 16 processors slightly
differs from the other calculations.

In the cases presented here a slow convergence can be observed despite the high
CFL number of the order 105 used, which is caused by the application of the LU-SGS
scheme to boundary layer flows in highly stretched grids. One aim of this study was to
investigate the effect of the entropy correction on the solution of the boundary layer
flow. In order to minimize the error due to spatial discretization a mesh more refined in
the direction normal to the wall than necessary in a standard calculation was used.
This leads to high aspect ratios in the cells along the wall, which, in combination with
the flow present, is known to cause problems with LU-SGS type schemes (Wright et al.,
1996). An improved convergence can be obtained when each line of cells along the flat
plate is solved in a coupled, line-implicit manner, instead of sweeps through the whole
domain. Details of the error smoothing capabilities of different methods can be found in
Wesseling (1992).

However, this is more expensive computationally and with respect to memory
requirements, which degrades some of the advantages gained over the LU-SGS scheme.
Further, for complex cases with solid walls and boundary layer flows in multiple
directions, along the j and h coordinates in the computational domain, a line-implicit
solution is difficult to implement, as the choice of coupling direction is not obvious. An
even more significant problem emerges in the context of parallel computation with
automated creation of subdomains, as presented in this paper, because only smaller
segments along the flat plate could be solved in a fully coupled manner, depending on the
domain subdivision present. As the additional cost of the LU-SGS scheme compared to
an explicit one is moderate, it is, especially considering chemically reactive flows, still a
suitable time-marching method, even for flows containing boundary or shear layers with
associated high aspect ratio cells in the meshes used.

Horizontal velocity contours in the base part of the domain are shown in Figure 5,
and pressure contours for the entire domain in Figure 6. The results for the parallel
computations are identical and only one solution is shown. The parallel performance is
given in Table I, where an overhead of around 8 per cent can be observed, which is
approximately independent of the number of processors used. This nearly linear
scalability is an excellent result.

The velocity and temperature profiles at a stream-wise position of x ¼ 0:915 m are
shown in Figure 7, where they are compared to numerical values obtained by Lawrence
et al. (1986). The solutions differ very slightly for different entropy correction
parameters.

However, the overall agreement is very good, despite the species properties in the
present code being calculated by means of kinetic gas theory instead of Sutherland’s
law, which was applied by Lawrence et al. (1986). Also, the representation of air as a
mixture of oxygen and nitrogen does not degrade the solution quality.

Diffusive mixing problem
A further important aspect of multi-species flows is the diffusive mixing between two
gas jets of different species composition. In this numerical experiment a pure nitrogen
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jet and a pure oxygen jet are entering the rectangular computational domain with a
height of 0.001 m and a length of 1 m, nitrogen in the upper and oxygen in the lower
part. Both gases enter the domain at the same inflow velocity of u ¼ 1; 000 m=s;
pressure of p ¼ 1 £ 105 Pa and temperature of 273.15 K. The set-up is shown in Figure 8
and the domain subdivisions resulting for 2, 4, 8 and 16 processors in Figure 9.
The mesh is refined along the centerline of the domain and towards the inflow
boundary. As for the flow over the flat plate, the influence of both entropy correction
parameter and domain subdivision are examined.

The diffusion problem is treated analytically by Heiser and Pratt (1994), where the
thickness dm of the mixing layer is approximated to

dm < 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DN22O2

x

u

r
ð23Þ

The binary diffusion coefficient DN22O2
¼ 1:75 £ 1025 m2=s used for the analytical

solution is that obtained by means of kinetic gas theory (Hirschfelder et al., 1954), and
therefore in agreement with that used in the numerical method. The position
downstream is x and the inflow velocity of the two jets is u. Further, the molar fraction
of nitrogen can be calculated according to

XN2
¼ 0:5 1 þ erf

4y

dm

� �� �
with erfðxÞ ;

2ffiffiffiffi
p

p

Z x

0

e2t 2

dt

Figure 5.
Horizontal velocity

contours of flow over flat
plate for base part of the

domain
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From known molar fractions the mass fractions can be calculated. It is apparent, that
an initially sharp mass fraction profile is being smeared out by diffusive effects as the
flow proceeds downstream.

Results obtained by the numerical method developed vary significantly, depending
on the magnitude of entropy correction used. In order to demonstrate this, three
calculations with entropy correction values of 1 ¼ 0:0; 0.5 and 1.0 are first performed
with the full equations and subsequently with the physical diffusion switched off.
The convergence histories for the calculations using CFL numbers of order 101 are
shown in Figure 10, where a strong influence of the entropy correction parameter can
be observed. With physical diffusion switched off the convergence is worse than in the
case when the correct equations are applied.

The oxygen mass fractions obtained for a position 1 m downstream are shown in
Figure 11, where cases with 1 ¼ 0:5 are omitted for clarity of the presentation.

Figure 6.
Pressure contours of flow
over flat plate

Nprocs 1 2 4 8 16

LIB – 0.008 0 0.017 0.026
PEF 1 0.927 0.929 0.892 0.911

Note: Results were obtained on a parallel computer with Intel P3 processors running at 1 GHz,
connected with a Myrinet network system. Intel and Myrinet are trademarks of the respective
companies

Table I.
Load imbalance, LIB, and
parallel efficiency, PEF,
for flow over flat plate

HFF
15,3

244



Figure 7.
Results for viscous

boundary layer flow over
flat plate
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Further, the profile of the oxygen mass fraction is smeared out more for higher entropy
correction. While the slope of the oxygen mass fraction in the centre of the domain at
y ¼ 0 m is reproduced correctly when physical diffusion is included into the equations,
it is much steeper otherwise.

The convergence for the parallel computations, with the entropy correction set equal
to zero, is influenced by the domain subdivision. In this particular case the convergence
is affected by the explicit coupling between the subdomains, because the signal
propagation in a steady-state calculation is different across subdomain boundaries.
The fact that the parallel convergence for two subdomains shown in Figure 10 is better
than that for a single processor calculation is an interesting result. It must be connected
with the domain subdivision coinciding with the upper and lower block boundaries

Figure 8.
Set-up for diffusive mixing
problem

Figure 9.
Domain subdivision for
diffusive mixing problem
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Figure 10.
Convergence histories for
computation of diffusive

mixing problem using
different entropy

correction coefficients and
numbers of processors
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Figure 11.
Results for diffusive
mixing problem with
different entropy
correction and physical
diffusion switched on
and off
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and the solution progress due to the sweeps performed when solving the resulting
system of equations with the LU-SGS scheme. It highlights the influence of the
coupling achieved by the solution method on the convergence for specific flow
problems discussed in the previous subsection.

The resulting solutions are identical and therefore only one solution is shown for the
oxygen mass fraction contours in Figure 11. The parallel performance is shown in
Table II, where an overhead of around 5 per cent was found for the parallel
computation. Only with the significantly increased load imbalance of the case with
16 processors the overall efficiency decreases.

Ideally the entropy correction should not be used in order to model the physically
correct species diffusion. In that particular case the physical solution is reproduced
numerically very well. However, stability considerations require a certain amount of
entropy correction especially for hypersonic blunt body flows. Yee et al. (1990)
suggested values of entropy correction vary from 1 ¼ 0 for flows with simple unsteady
shocks up to 0.25 for blunt body flows. Choi et al. (2000a) use an even higher value of
1 ¼ 0:4 to ensure solution stability. In work by Gaitonde (1992) values up to 1 ¼ 0:8
were used to obtain correct solutions for supersonic flows around cylinders, depending
on the mesh used.

Oscillating shock-induced combustion
When a projectile is fired into a combustible gas mixture steady shock-induced
combustion, oscillating shock-induced combustion or detonation may occur, depending
on the gas state and flight Mach number. Lehr (1972) did extensive experiments to
examine these phenomena and its findings are widely used for the validation of
numerical methods for reactive flow computations.

Therefore, the present code is used to reproduce the flow field for a projectile flying
into the gas mixture at Mach numbers of 4.08, 4.48 and 6.46. The initial pressure and
temperature are 43,383 Pa and 292 K, air is mixed with hydrogen stoichiometrically.

As pointed out by Choi et al. (2000a) viscous effects are of minor importance in this
experiment. Hence, the inviscid, axisymmetric equations for a reactive multi-species
gas are used. The gas is represented by nine species, with nitrogen assumed inert, and
the reaction mechanism by 19 elementary reaction equations, as suggested by Choi
et al. (2000a). The numerical set-up is chosen to equal the baseline method presented by
Choi et al. (2000a), and the calculations performed using a mesh with 300 cells in
direction normal and 200 cells tangential to the projectile surface.

The computational mesh and the domain subdivisions for 8, 16 and 32 processors
are shown in Figure 12. The resulting Mach number contours calculated on the same
mesh, with 300 £ 200 cells, for the different projectile velocities are shown in
Figure 13(a), (b) and (d). For the projectile Mach number 4.48 the oscillating

Nprocs 1 2 4 8 16

LIB – 0 0.032 0 0.080
PEF 1 0.952 0.947 0.978 0.865

Note: Results were obtained on a parallel computer with Intel P3 processors running at 1 GHz,
connected with a Myrinet network system. Intel and Myrinet are trademarks of the respective
companies

Table II.
Load imbalance, LIB, and

parallel efficiency, PEF,
for diffusive mixing

problem
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shock-induced combustion is already fully developed. In order to demonstrate the
sensitivity of the physical problem to spatial resolution of the mesh the case with
the projectile Mach number 6.46 was calculated on a mesh with half the cell number
in both geometrical directions. On the coarse mesh the separation of the
detonation wave into shock wave and flame front is not predicted at all, as shown
in Figure 13(c).

The stagnation point temperature histories of the calculations with different
projectile velocities are shown in Figure 14. In the case of the flight Mach number 4.48
the resolution of the oscillations greatly depend not only on the spatial resolution of the
mesh but also on the accuracy of the time-marching integration. A CFL number of 1
was used to calculate the time-step for the third order accurate stencil representing the
temporal discretization. The diagonal dominance factor c ¼ 2:5 and an error tolerance
of equal or less than 1028 was applied for the sub-iterations. The oscillation frequency
obtained from calculations with the present code is 427 kHz, which compares well with
the 425 kHz measured in the experiment and also reproduced numerically by Choi et al.
(2000a) and results in a relative error in frequency below 0.5 per cent. The history of the
density along the stagnation streamline for a time between 70 and 80ms is shown in

Figure 12.
Mesh and subdivision for
calculation of
shock-induced combustion
around projectile
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Figure 15. Calculations for this particular case were also performed with an accuracy of
temporal discretisation reduced to two, and less strict sub-iteration convergence limit.
This leads to the oscillations appearing at a later time and the oscillation frequency
reproduced less accurate.

The cases with a steady flow around the projectile, for Mach numbers 4.08 and 6.46,
were also reproduced by steady-state calculations, resulting in the same flow field as
the time-accurate calculations.

Parallel calculations of the flow around the projectile with a flight Mach number of
4.48 were performed in order to investigate the influence of the domain subdivision on
the solution accuracy. As noted before, the explicit coupling of the subdomains is
compensated by the sub-iterations, because they reinforce the spatially implicit
coupling. This was confirmed by the parallel computations where no influence of the
domain subdivision could be noticed. The parallel performance of the calculations is

Figure 13.
Mach number contours for

projectile at flow Mach
numbers, Ma ¼ 4.08, 4.48

and 6.46
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shown in Table III, where parallel efficiency is directly related to load imbalance.
Taking the load imbalance into account, the overhead associated with the parallel
execution of the code is marginal.

Conclusions
A parallelized computational fluid dynamics code for the calculation of laminar
chemically reactive and inert multi-species gas flows has been presented and validated
with numerical, analytical and experimental results.

The validation has shown good reproduction of boundary layer flows, diffusive
mixing and steady-state and time-accurate shock and detonation induced combustion.

Figure 14.
Stagnation point
temperature over time for
projectile with flow Mach
numbers, Ma ¼ 4.08, 4.48
and 6.46
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Apart from some overhead when compared with a single-processor calculation, the
parallel computation achieved an excellent parallel performance, that was only reduced
in the case of a domain subdivision with load imbalance. This implies that for the
present code the additional communication required for a higher number of processors
is marginal and does not significantly degrade the parallel performance. With the
numbers of processors used, subdomain sizes small enough than the communication
overhead would become significant were not reached.

The present code represents a validated, efficient and versatile tool developed for
the simulation of hypersonic multi-species flows in chemical non-equilibrium. Future
work considered includes the implementation of turbulence models and an extension to
three spatial dimensions.

The computational cost of three-dimensional, turbulent and chemically reactive
flows with complex chemical reaction schemes becomes much higher as that of
comparable two-dimensional laminar flows. This problem becomes even more
pronounced considering the time-accurate solution of unsteady physical cases and,
therefore, a parallelization can currently be considered the only practical way to solve

Figure 15.
Density history for

stagnation point
streamline for flow around

projectile at flow Mach
number, Ma ¼ 4.48

Nprocs 1 8 16 32

LIB – 0.0095 0.0192 0.1424
PEF 1 0.9794 0.9542 0.8673

Note: Results were obtained on a parallel computer with Intel P3 processors running at 1 GHz,
connected with a Myrinet network system. Intel and Myrinet are trademarks of the respective
companies

Table III.
Parallel efficiency for

calculations of oscillating
shock-induced combustion

around projectile flying
into stoichiometric

hydrogen-air mixture at a
flight Mach number,

Ma ¼ 4.48
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them. As an LU-SGS scheme comparable to that used in this paper for parallel
computation has been introduced for computation in three spatial dimensions by
Rieger and Jameson (1988), the method developed and presented in this paper appears
suitable for the further extension suggested. This is true for both time and memory
requirements of the calculation, as the domain subdivision and calculation of the
problem on a shared memory computer implies memory requirements for each
processor proportionate to the number of processors used.

References

Choi, J-Y., Jeung, I-S. and Yoon, Y. (1998), “Numerical study of scram accelerator starting
characteristics”, AIAA Journal, Vol. 36 No. 6, pp. 1029-38.

Choi, J-Y., Jeung, I-S. and Yoon, Y. (1999), “Unsteady-state simulation of model ram accelerator in
expansion tube”, AIAA Journal, Vol. 37 No. 5, pp. 537-43.

Choi, J-Y., Jeung, I-S. and Yoon, Y. (2000a), “Computational fluid dynamics algorithms for
unsteady shock-induced combustion, part 1: validation”, AIAA Journal, Vol. 38 No. 7,
pp. 1179-95.

Choi, J-Y., Jeung, I-S. and Yoon, Y. (2000b), “Computational fluid dynamics algorithms for
unsteady shock-induced combustion, part 2: comparison”, AIAA Journal, Vol. 38 No. 7,
pp. 1179-95.

Dolling, D.S. (1992), “Problems in the validation of CFD codes through comparison with
experiment”, AGARD Conference Proceedings 514, “Theoretical and Experimental
Methods in Hypersonic Flows”.

Edwards, T.A. (1992), “CFD analysis of hypersonic, chemically reacting flow fields”, AGARD
Conference Proceedings 514, “Theoretical and Experimental Methods in Hypersonic
Flows”.

Ess, P.R. (2003), “Numerical simulation of blunt-body generated detonation waves in viscous
hypersonic ducted flows”, PhD thesis, Department of Aerospace Engineering,
University of Bristol, Bristol.

Gaitonde, D. (1992), “High-speed viscous flows past blunt bodies and compression corners with
flux-split methods”, Technical Report AD-A253, 413WL-TR-92-3018, Flight Dynamics
Directorate, Wright Laboratory, Air Force Systems Command, Wright-Patterson Air
Force Base, Ohio, 45433-6553.

Gardiner, W.C., Jr (1984), Combustion Chemistry, Springer, Berlin.

Gressier, J. and Moschetta, J-M. (2000), “Robustness versus accuracy in shock-wave
computations”, International Journal for Numerical Methods in Fluids, Vol. 33, pp. 313-32.

Heiser, W.H. and Pratt, D.T. (1994), Hypersonic Airbreathing Propulsion, Education Series,
AIAA, Washington, DC.

Hirsch, C. (1988), Numerical Computation of Internal and External Flows, Vol. 1-2, Wiley,
Chichester, New York, NY, Brisbane, Toronto and Singapore.

Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B. (1954), Molecular Theory of Gases and Liquids,
Wiley, New York, NY.

Jachimowski, C.J. (1988), “An analytical study of the hydrogen-air reaction mechanism with
application to scramjet combustion”, Technical Report NASA Technical Paper 2791,
NASA, Langley Research Center, Hampton,VA.

Jameson, A. and Turkel, E. (1981), “Implicit schemes and LU decompositions”, Mathematics of
Computation, Vol. 37 No. 156, pp. 385-97.

HFF
15,3

254



Kunz, R.F. and Lakshminarayana, B. (1992), “Stability of explicit Navier-Stokes procedures using
k-1 and k-1/algebraic Reynolds stress turbulence models”, Journal of Computational
Physics, Vol. 103, pp. 141-59.

Lawrence, S.L., Tannehill, J.C. and Chaussee, D.S. (1986), “An upwind algorithm for the
parabolized Navier-Stokes equations”, paper presented at the AIAA/ASME 4th Fluid
Mechanics, Plasma Dynamics and Lasers Conference, No. AIAA-86-1117.

Lehr, H.F. (1972), “Experiments on shock-induced combustion”, Astronautica Acta, Vol. 17,
pp. 589-97.

McBride, B.J., Gordon, S. and Reno, M.A. (1993), “Coeffcients for calculating thermodynamic and
transport properties of individual species”, Technical Report NASA Technical
Memorandum 4513, NASA, Lewis Research Center, Cleveland, OH.

Marvin, J.G. (1992), “A CFD validation roadmap for hypersonic flows”, AGARD Conference
Proceedings 514, “Theoretical and Experimental Methods in Hypersonic Flows”.

Nusca, M.J. (2002), “Numerical simulation of the ram accelerator using a new chemical kinetics
mechanism”, Journal of Propulsion and Power, Vol. 18 No. 1, pp. 44-52.

Nusca, M.J. and Kruczynski, D.L. (1996), “Reacting flow simulation for a large-scale ram
accelerator”, Journal of Propulsion and Power, Vol. 12 No. 1, pp. 61-9.

Pandolfi, M. and D’Ambrosio, D. (2001), “Numerical instabilities in upwind methods: analysis
and cures for the carbuncle phenomenon”, Journal of Computational Physics, Vol. 166,
pp. 271-301.

Rieger, H. and Jameson, A. (1988), “Solution of the three-dimensional compressible Euler and
Navier-Stokes equations by an implicit LU scheme”, paper presented at the 26th AIAA
Aerospace Sciences Meeting, Reno, Nevada, 11-14 January, No. AIAA-1988-0619.

Roose, D. and van Driessche, R. (1995), “Parallel computers and parallel algorithms for cfd: an
introduction”, Chapter 1, Special Course on Parallel Computing in CFD, No. AGARD-R-807.

Shuen, J-S. (1992), “Upwind differencing and LU factorization for chemical nonequilibrium
Navier-Stokes equations”, Journal of Computational Physics, Vol. 99, pp. 233-50.

Shuen, J-S., Liou, M-S. and van Leer, B. (1990), “Inviscid flux-splitting algorithms for real gases
with non-equilibrium chemistry”, Journal of Computational Physics, Vol. 90, pp. 371-95.

Struckmeier, J. and Pfreundt, F.J. (1993), “On the effciency of simulation methods for the
Boltzmann equation on parallel computers”, Parallel Computing, Vol. 19, pp. 103-19.

Sweby, P.K. (1984), “High resolution schemes using flux limiters for hyperbolic conservation
laws”, SIAM Journal of Numerical Analysis, Vol. 21 No. 5, pp. 995-1011.

von Lavante, E., Zeitz, D. and Kallenberg, M. (2001), “Numerical simulation of supersonic air flow
with transverse hydrogen injection”, Journal of Propulsion and Power, Vol. 17 No. 6,
pp. 1319-26.

Warnatz, J. and Maas, U. (1993), Technische Verbrennung, Springer, Berlin.

Wesseling, P. (1992), An Introduction to Multigrid Methods, Wiley, Chichester.

Williams, F.A. (1985), Combustion Theory, 2nd ed., Benjamin/Cummings, Menlo Park, CA.

Wilson, G.J. and MacCormack, R.W. (1992), “Modeling supersonic combustion using a fully
implicit numerical method”, AIAA Journal, Vol. 30 No. 4, pp. 1008-15.

Wright, M.J., Candler, G.V. and Prampolini, M. (1996), “Data-parallel lower-upper relaxation
method for the Navier-Stokes equations”, AIAA Journal, Vol. 34 No. 7, pp. 1371-7.

Yee, H.C. and Shinn, J.L. (1989), “Semi-implicit and fully implicit shock-capturing methods for
nonequilibrium flows”, AIAA Journal, Vol. 27 No. 3, pp. 299-307.

Parallel
computation

255
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